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1 Introduction

Inflation expectations are shown to matter for economic decision-making (see, for instance,

Coibion et al. (2019a), Coibion et al. (2019b), and Hajdini et al. (2022b)). Because there are many

ways in which these expectations depart from rationality, a large literature aims to understand

– primarily in the domain of consumer expectations – the expectations formation processes and

their implications for macro dynamics.1 Specifically, the behavioral literature has shown that con-

sumers may use availability heuristics to form expectations (Tversky and Kahneman (1973)), im-

plying that they find events that are more salient or easier to recall to be more likely.2 Recent work

by da Silveira and Woodford (2019) and Bordalo et al. (2023) has focused on understanding the

role of memory in belief formation.3

We contribute to current literature by showing – through the lens of inflation expectations

– that social comparison can play a complementary, important role in the process of belief for-

mation, as postulated in Festinger (1954). In his original work, Festinger (1954) evaluated the

hypothesis in various experimental social contexts that “people evaluate their opinions and abili-

ties by comparison respectively with the opinions and abilities of others.” We formalize this point

theoretically and show that there is a role for the opinions and abilities of others. In the same

work, Festinger (1954) claimed that “The tendency to compare oneself with some other specific

person decreases as the difference between his opinion or ability and one’s own increases.” Our

framework likewise formalizes this role of social similarity for the context of expectations: While

individual experiences are heterogeneous and volatile, social comparison may contribute to more

homogeneous inflation expectations and could make other consumers’ expectations useful.

We provide strong empirical evidence for the relevance of social comparison in the process of

belief formation. We do so on the basis of a novel dataset that merges a uniquely dense survey of

inflation expectations for nearly 2 million US consumers across counties in the US with informa-

tion on the social network connections of individuals in a county with other counties in the US (see

e.g. Bailey et al. (2018a)). Exploiting cross-sectional and time variation while taking into account

1See, for instance, Coibion and Gorodnichenko (2015a), Gabaix (2020), Kohlhas and Walther (2021), L’Huillier et al.
(2021), among many others.

2See, for example, Carroll (2003).
3Implications of memory and its limits on economic behavior have been also studied in Dow (1991), Mullainathan

(2002), Gennaioli and Shleifer (2010), among others.
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local inflation expectations and time-fixed effects, a clear finding emerges: The inflation expec-

tations of others matter when individuals form their own inflation expectations. An appropriate

instrumentation strategy ensures we can interpret this finding causally and also, as immune to the

endogeneity concerns embodied by the reflection problem (Manski (1993)). Moreover, using data

on demographic characteristics, inflation expectations of an individual’s social network turn out

to matter more if the network contains people of the same demographic group, in short: if social

similarity is high. These results indicate that Festinger (1954)’s original hypothesis matters in the

context of belief formation.

Our theoretical analysis develops the idea of social comparison in Festinger (1954) for the for-

mation of economic expectations by embedding it into the framework of memory and similarity

of recall in Bordalo et al. (2023). While we implement the idea in the framework of Bordalo et al.

(2023), it can broadly be implemented in any other behavioral frameworks. In the work of Bor-

dalo et al. (2023), individuals recall hypothesis k by drawing experiences stored in their memory

database with some recall probability. A similarity function that measures the intensity of resem-

blance between an experience and hypothesis k is at the core of the recall probability of hypothesis

k.4 Individuals randomly draw experiences from their memory dataset, and the number of times

that the individual successfully recalls events aligned with hypothesis k is governed by a binomial

distribution with probability equal to the recall probability of k. This number of successful draws

then determines this individual’s subjective likelihood that hypothesis k occurs.

We extend this framework of Bordalo et al. (2023) and allow for social comparison to affect

probability assessments by explicitly extending the memory database to include the experiences

retrievable from one’s social network. When disciplining recall probabilities, we assume that in-

dividuals divide their attention between their own experiences and experiences shared through

the social network. Similarly, we assume that any individual assigns her attention among the

experiences shared by the various members of her network. Finally, we allow for the similarity

function to depend on the number of demographic characteristics that an individual shares with

each member of the network.

The model analysis yields three predictions for the formation of inflation expectations in the

4The similarity function is assumed to be fairly generic. As a result, the implications of our framework would
continue to apply if the similarity function depends on variables that speak to other behavioral biases of expectations
formation processes.

2



presence of social networks. First, social networks matter for expectations if individuals pay at-

tention to experiences shared by members of their social network. In particular, social interaction

generates amplification if shared experiences are relatively more relevant than irrelevant for a

high-inflation scenario. Second, in inflationary environments, networks of common demograph-

ics amplify expectations if they increase similarity between shared experiences and the scenario

of high inflation. Moreover, the likelihood that social interaction amplifies inflation expectations

is higher if people are more attentive to individuals with whom they share a larger number of

demographics, given that similarity of experiences shared through the social network with a sce-

nario of high inflation is increasing in common demographics. Third, idiosyncratic county-level

inflationary disturbances can destabilize inflation expectations if aggregate attention to experi-

ences retrieved from the memory database of the social network exceeds aggregate attention to

experiences retrieved from the personal memory database.

These predictions find strong empirical support from a novel dataset. This dataset derives

from a merger of a uniquely dense survey of inflation expectations for nearly 2 million US con-

sumers across counties in the US with data on the social networks of individuals across counties

(see e.g. Bailey et al. (2018a)). The combination of these two datasets allows us to observe the

inflation expectations of an individual in a county, the average probability that this individual is

connected to an individual in another county in the US (based on Facebook friendships between

counties), and the inflation expectations of individuals in other counties. We use these data, first,

to construct a measure of an individual’s exposure to inflation expectations in other counties. We

assume that the average social connection of an individual in a given county captures this expo-

sure, a measure of the network weight that has been shown to be relevant in other applications

such as in Kuchler et al. (2022). Given these weights, we compute network-weighted inflation ex-

pectations of expectations based on all respondents in the other counties, as we well as for sets of

individuals with similar demographic groups only (based on gender, income, and political party).

Second, we compute average inflation expectations within a given county, excluding those of the

individual under consideration in the given county.

Strong evidence – in the spirit of Festinger (1954) – emerges from several regression specifi-

cations that experiences of individuals in geographically distant, but socially connected counties

matter for the formation of inflation expectations. First, an increase of 1 percentage points of the
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network-weighted inflation expectations in other counties is associated with a rise of 0.29 percent-

age points in an individual’s inflation expectations, after filtering out county fixed effects and the

average inflation expectation of the county. Second, a one-percentage-point increase of network-

weighted inflation expectations of individuals with the same reported gender that live in other

counties is associated with increased inflation expectations of 0.754 percentage points. This larger

coefficient estimate compared to the first regression result suggests that individuals pay relatively

more attention to the experiences of people in the same demographic group.5

While these results take into account unobserved factors through detailed fixed effects, vari-

ation may still be endogenous. For example, expectations might be affected by common shocks

or other concerns such as described by the reflection problem (Manski (1993)).6 Construction of

an exogenous shock at the county-time level allows us to address such concerns of endogeneity.

The idea is simple: Gas prices are relevant for the formation of inflation expectations (Coibion and

Gorodnichenko (2015b)); the relevance of gas prices varies across cities, depending on the impor-

tance of gas use. We can thus use a shift-share approach exploiting different commuting shares

by car across counties (and hence gas use) to obtain county-time specific exogenous shocks to gas

prices after filtering out any common time variation from the shift-share measures. By then show-

ing that a network-weighted measure of these exogenous, county-specific shocks has a strong and

statistically significant effect on individual inflation expectations, we can give a causal interpreta-

tion to the importance of social networks for the formation of inflation expectations. Going one

step further, we can also establish causality in the relationship between the beliefs embedded in

an individual’s social network and the formation of individual inflation expectations. To do so,

we use this measure of network-weighted gas use as a instrumental variable in a regression of in-

dividual inflation expectations on network-weighted inflation expectations. The coefficient on the

network’s expectations is higher than in the case of the above OLS specification and statistically

5Notably, this result is obtained after controlling for the average inflation rate in one’s own county and county-time
fixed effects: Such county-time fixed effects filter out any common variation at the county level, including possible
confounding network effects and the effects of other shocks affecting the area.

6We prove that the reflection problem induces a bias in the estimated effects of social networks on inflation
expectations only if the network truly matters for expectations. By contrast, if the social network is in fact irrelevant
for inflation expectations, then the reflection problem disappears. As a result, it must be that any non-zero empirical
correlation between individual expectations and the expectations of the network indicates relevance of social networks
for inflation expectations. Our reduced-form OLS results show presence of a significantly positive correlation between
individual inflation expectations and the expectations of others, implying that the network matters for expectations
formation. While an OLS coefficient that is different from zero is sufficient to show that the network matters, we rely
on an IV approach to quantify the importance of the network for inflation expectations.
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different from zero.

Clearly, social interaction matters for the formation of expectations. But what are the stabil-

ity properties of social networks implied by these estimates, following a one-time idiosyncratic

county-level shock to inflation expectations?7 For example, if individuals pay too much attention

to the experiences in their network instead of their own experiences, the social network might ren-

der beliefs unstable. We derive conditions for instability which show that our empirical findings

still indicate stability. Likewise, while the results based on the instrumental variables approach

present a higher coefficient estimate, they still imply stability. At the same time, the higher point

estimate implies stronger amplification of possibly salient price changes. These findings overall

indicate that variation coming from salient prices, that individuals discuss more, can exacerbate

inflation expectations significantly. These findings also indicate that policy makers should iden-

tify those informational shocks that transmit strongly through the network to control unstable

movements in inflation expectations.

In the literature, many studies have shown how individual characteristics and experiences af-

fect the process of expectations formation. For example, Malmendier and Nagel (2016) find that

past individual experiences influence their reported inflation expectations. D’Acunto et al. (2021)

find that shopping experiences matter for expectations formation. Kuchler and Zafar (2019) show

how individuals extrapolate from recent personal experiences when forming expectations about

aggregate economic outcomes. More generally, Hajdini et al. (2022a) show that demographic char-

acteristics, such as gender, income, political affiliation, and the like, matter for the formation of

expectations. These findings relate to a theoretical literature which argues that individuals use

simple rules, or heuristics, in the formation of beliefs. This literature goes back most prominently

to Kahneman and Tversky (1972). It has recently been refined using the diagnostic expectation

model (Bordalo et al. (2018), Bordalo et al. (2019), L’Huillier et al. (2021)), as well as through the

idea of memory in the expectation formation process (da Silveira and Woodford (2019), Bordalo et

al. (2023)). As posited by Festinger (1954), social interaction can help to further discipline the for-

mation of expectations. While it has been shown that social experiences matter in other contexts,

such as the pandemic (Kuchler et al. (2022)), we highlight both theoretically and empirically the

7The implications of idiosyncratic shocks have been studied in other contexts; for instance, Gabaix (2011) has
shown that idiosyncratic firm-level shocks can explain an important part of aggregate fluctuations.
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role that social experiences play in disciplining the expectations formation process of individuals.

Our analysis also broadly relates to a growing literature that studies the effects of interactions

through social networks on economic decision-making. For example, Bailey et al. (2018b) studies

the role of social networks in shaping decisions about housing. They find that individuals whose

geographically distant friends experienced larger house price increases are more likely to tran-

sition from renting to owning. We contribute to this literature in the domain of expectations by

showing that social networks can affect individuals’ inflation expectations. Analyzing the eco-

nomic effects of social interactions on inflation expectations is fundamentally challenging because

of the absence of high-quality data on social networks that can be linked to a representative survey

of inflation expectations – a challenge our analysis overcomes.

The remainder of the paper is organized as follows. Section 2 presents a model of inflation

expectations and social networks. Section 3 presents the data that we use in this paper. Section

4 presents the main empirical results. Section 5 applies an instrumental variable strategy to the

empirical analysis and and discusses stability implications of social networks for inflation expec-

tations. Finally, Section 6 concludes.

2 Theoretical Framework

In this section, we extend the memory and recall model of Bordalo et al. (2022) and Bordalo et

al. (2023) by incorporating the feature of social interaction. We start off by describing a baseline

setting in which individuals in the economy do not socially interact with one another (similar to

Bordalo et al. (2022) and Bordalo et al. (2023)). We then allow for individuals to socially interact

and exchange experiences with one another, and derive a number of testable implications.

2.1 Baseline: No Social Interaction

Consider some individual j, who has stored a set of personal experiences in her memory database

Ej of size |Ej|. For simplicity, we split the set of experiences of j into three mutually exclusive

subsets containing high inflation experiences, EH
j , low inflation experiences, EL

j , and experiences

that are irrelevant to high or low inflation experiences, EO
j . We would like to asses the probabil-

ity that individual j recalls experiences that are similar to a particular hypothesis k ∈ K = {H, L},

where H denotes the hypothesis of high inflation and L that of low inflation. To assess the prob-
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ability of recall, we define a similarity function between two events uj ∈ Ej and vj ∈ Ej, that is,

Sj(uj,vj) : Ej × Ej →
[

0 S̄j

]
, that quantifies the similarity between individual j’s experience uj

and vj. The similarity between any two experiences uj and vj increases in the number of shared

features between the two experiences, and the highest value of similarity, S̄j, is achieved when

uj = vj. We purposefully abstract from providing a particular functional form for Sj to warrant

generality of our results.8

The similarity between an experience ej and a subset of experiences, A ⊂ Ej, is given by

Sj(ej, A) = ∑
uj∈A

Sj(ej,uj)

|A| (1)

and the probability r(ej,k) that individual j recalls experience ej when cued with hypothesis k is

given by the similarity between ej and event k as a share of the total similarity between all the

experiences in the memory database and hypothesis k:

r(ej,k) =
Sj(ej,k)

∑e∈Ej
S(u,k)

(2)

Next, the probability that individual j recalls experiences similar to hypothesis k ∈ K is given

by the total similarity between experiences related to k and hypothesis k as a share of the total

similarity between all the experiences in the memory database and hypothesis k, that is,

rj(k) =
∑e∈Ek

j
Sj(e,k)

∑e∈EH
j

Sj(e,k) + ∑e∈EL
j

Sj(e,k) + ∑e∈EO
j

Sj(e,k)
(3)

It is important to note that an enlargement of experiences related to k leads to a higher recall

probability of hypothesis k, but experiences unrelated to k imply interference for rj(k).

2.2 Social Interaction

Now suppose that individual j socially interacts with other individuals i ∈ {1,2, ..., j− 1, j+ 1, ..., Nj +

1}, such that every individual i shares experiences with j. Nj denotes the total number of individ-

uals that j interacts with. We denote the set of experiences that individual i shares with individual

j by Ei→j (without putting any restrictions on the flow of information in the reverse direction).
8Relatedly, the functional form of similarity can very well be unique to individual j, and depend on her behavioral

characteristics, cognitive abilities, etc.
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Experiences shared by individual i are categorized into three mutually exclusive subsets: high

inflation experiences, EH
i→j, low inflation experiences, EL

i→j, and irrelevant experiences to high or

low inflation, EO
i→j.

We assume that, when interacting with others, individual j’s assessment of similarity between

k-related experiences shared by any individual i and any hypothesis k is conditional on the share

of common demographic characteristics between j and i, θji. Therefore, the similarity between

any experience e ∈ Ei→j and hypothesis k is given by Sj(e,k | θji). This assumption allows for a

heterogeneous function to judge similarity between a given hypothesis and experiences shared by

others. Using common demographic characteristics is a natural way to do so, given the growing

empirical evidence that shows that individuals with common demographic characteristics, such

as gender and age group, share similar experiences in terms of inflation (see, for instance, Mal-

mendier and Nagel (2016), D’Acunto et al. (2021), Hajdini et al. (2022a), and Pedemonte et al.

(2023), among others).

When computing recall probabilities, we assume that individual j assigns weight γj ∈ [0,1] to

her own experiences and weight (1 − γj) to everyone else’s experiences. We further assume that

she assigns weight ωji ∈ [0,1] to experiences shared by individual i, for any i ∈ {1,2, ..., j − 1, j +

1, ..., Nj + 1}, such that ∑i ωji = 1.

We let r̂j(k) denote individual j’s probability of recalling experiences linked to hypothesis

k ∈ {H, L} when she socially interacts with others. Such recall probability is given by:

r̂j(k) =
γj ∑e∈Ek

j
Sj(e,k) + (1 − γj)∑i ωji ∑e∈Ek

i→j
Sj(e,k | θji)

γj ∑e∈Ej
Sj(e,k) + (1 − γj)∑i ωji ∑e∈Ei→j

Sj(e,k | θji)
(4)

where ∑e∈Ej
Sj(e,k) =∑e∈EH

j
Sj(e,k)+∑e∈EL

j
Sj(e,k)+∑e∈EO

j
Sj(e,k) and ∑e∈Ei→j

Sj(e,k | θji) =∑e∈EH
i→j

Sj(e,k |

θji) + ∑e∈EL
i→j

Sj(e,k | θji) + ∑e∈EO
i→j

Sj(e,k | θji).

To understand whether social interaction amplifies or mitigates the recall probability of events

pertaining to hypothesis k, we derive conditions under which the recall probability under social

interaction, r̂j(k), is higher than the recall probability when social interaction is absent, rj(k). To

do this, we compute the difference between r̂j(k) and rj(k), that is,
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r̂j(k)− rj(k) =
γj ∑e∈Ek

j
Sj(e,k) + (1 − γj)∑i ωji ∑e∈Ek

i→j
Sj(e,k | θji)

γj ∑u∈Ej
Sj(u,k) + (1 − γj)∑i ωji ∑u∈Ei→j

Sj(u,k | θji)
−

∑e∈Ek
j
Sj(e,k)

∑u∈Ej
Sj(u,k)

(5)

Proposition 1 provides conditions for social interaction to be relevant for recall probabilities

and for social interaction to increase the recall probability of hypothesis k.

Proposition 1. The following statements are true:

1. If individual j allocates no attention to experiences shared by others, that is, γj = 1, then social inter-

action has no affect on recall probabilities.

2. Suppose that j assigns some weight to the experiences shared by others, that is, γj ∈ [0,1). Then,

social interaction increases the recall probability of hypothesis k if the total similarity of k-relevant

shared experiences relative to that of k-relevant own experiences exceeds the aggregate similarity of

k-irrelevant shared experiences relative to that of k-irrelevant own experiences:

∑i ωji ∑e∈Ek
i→j

Sj(e,k | θji)

∑e∈Ek
j
Sj(e,k)︸ ︷︷ ︸

relative relevance

>
∑i ωji

(
∑u∈EK\k

i→j
Sj(u,k | θji) + ∑u∈EO

i→j
Sj(u,k | θji)

)
∑K\k

u∈Ej
Sj(u,k) + ∑u∈Ek

j
Sj(u,k)︸ ︷︷ ︸

relative irrelevance

(6)

Proof. See Appendix D.1.

We call the term on the left-hand side of inequality (6) relative relevance and the term to the

right-hand side relative irrelevance. Then, in order for social interaction to amplify the recall prob-

ability of events related to hypothesis k, relative relevance has to exceed relative irrelevance. By

the same argument, social interaction interferes with the recall probability of events linked to hy-

pothesis k if relative irrelevance surpasses relative relevance.

Corollary 1 considers two extreme cases of Proposition 1: first, when any individual i shares

with individual j only experiences that relate to hypothesis k; and second, when any individual i

shares with individual j only experiences that do not relate to hypothesis k.

Corollary 1. Consider the environment described in Proposition 1. Then, the following statements are true:

1. Suppose that any individual i shares with j experiences that only relate to hypothesis k. Then, social

interaction amplifies individual j’s recall probability of k.
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2. Next, suppose that all individuals i share experiences that do not relate to hypothesis k. Then, social

interaction interferes with individual j’s recall probability of k.

Proof. See Appendix D.2.

Proposition 2 shows the implications that a change in attention to shared experiences has on

the probability of recall, in the presence of social interaction. In particular, if social interaction

gives rise to a higher recall probability, then an increase in the attention to others’ experiences will

amplify the recall probability even more.

Proposition 2. If the condition in (6) holds true, then an increase in attention to shared experiences, that

is, (1 − γj), intensifies the increase in the recall probability induced by social interaction.

Proof. See Appendix D.3.
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Figure 1: Visual summary of the main theoretical results

0 1

0

1

Note: Summary of the direction of amplification for the recall probability related with hypothesis k, for any γj ∈ [0,1) and RR/RI =

relative relevance/relative irrelevance. Arrows in red indicate the direction of amplification for the recall probability as γj changes,

for a given RR/RI; arrow in blue indicates the direction of amplification for the recall probability as RR/RI changes, for a given γj.

Left-hand side: relative relevance > relative irrelevance; right-hand side: relative relevance < relative irrelevance; dashed gray line:

relative relevance = relative irrelevance.

Figure 1 visually summarises the main theoretical results of Propositions 1, 2, and Corollary

1. Consider a social network where experiences are shared whose aggregate relative relevance

exceeds relative irrelevance with hypothesis k. Then, paying more attention to the social network

means social interaction will intensify the recall probability of such a hypothesis. However, when

aggregate relative relevance is lower than relative irrelevance with hypothesis k, then paying more

attention to the social network means social interaction will dampen the recall probability of such

a hypothesis.

What about paying more attention to a specific individual? The effects that weights ωji have

on the implications of social interaction on recall probabilities are not trivial to analyze. Proposi-
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tion 3 provides a condition for which a change in the weight assigned to experiences shared by a

particular individual facilitates the occurrence of inequality in (6).

Proposition 3. Suppose that individual j allocates more attention to experiences shared by individual l at

the expense of attention allocated to experiences shared by individual q, that is, suppose that ωjl increases,

ωjq decreases, and all the other weights remain the same. Then, social interaction is more likely to amplify

the recall probability of hypothesis k if individual l adds more relative relevance than relative irrelevance for

this hypothesis, when compared with individual q:

∑e∈Ek
l→j

Sj(e,k | θjl)− ∑e∈Ek
q→j

Sj(e,k | θjq)

∑e∈Ek
j
Sj(e,k)︸ ︷︷ ︸

marginal relative relevance

>
∑e∈Ek−

l→j
Sj(e,k | θjl)− ∑e∈Ek−

q→j
Sj(e,k | θjq)

∑e∈EK\k
j

Sj(e,k) + ∑e∈EO
j

Sj(e,k)︸ ︷︷ ︸
marginal relative irrelevance

(7)

where k− = {K\k,O}, and ∑e∈Ek−
i→j

Sj(e,k | θji) = ∑e∈EK\k
i→j

Sj(e,k | θji) + ∑e∈EO
i→j

Sj(e,k | θji) for any i ∈

{l,q}.

Proof. See Appendix D.4.

We refer to the term in the left-hand side of condition (7) as marginal relative relevance and

to the term in the right-hand side as marginal relative irrelevance. Proposition 3 shows that if

the marginal relative relevance exceeds the marginal relative irrelevance, that is, if individual j

is more attentive to individuals who share experiences with relative relevance for hypothesis k

while shifting attention away from individuals who share experiences with relative irrelevance,

then social interaction is more probable to amplify the recall probability of hypothesis k.

Finally, we turn to the effects that common demographic factors have on the recall probability

of hypothesis k in Corollary 2. For simplicity purposes, we assume that the number of common

demographic factors only affects the similarity between hypothesis k and shared events that belong

to the hypothesis k subset of experiences.

Corollary 2. Suppose that Sj(e,k | θji) is increasing in θji for any e ∈ Ek
i→j, but Sj(e,k | θji) = Sj(e,k)

for any e ∈ Ek−
i→j. Social interaction is more likely to propagate the recall probability of hypothesis k if indi-

vidual j allocates more attention to an individual with whom she shares more demographic factors and less

attention to a person with whom she shares fewer demographics.

Proof. It follows directly from Proposition 3.
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To illustrate Corollary 2, suppose that the only demographic factor affecting the similarity

function is gender, thus θji ∈ {0,1}. Further, let’s assume that individual j is a female. Corollary 2

implies that, given experiences Ek
i→j, ∑e∈Ek

i→j
Sj(e,k | 1) > ∑e∈Ek

i→j
Sj(e,k | 0), for any i ∈ {l,q}. This

implies that

∑e∈Ek
l→j

Sj(e,k | 1)− ∑e∈Ek
q→j

Sj(e,k | 0)

∑e∈Ek
j
Sj(e,k)︸ ︷︷ ︸

MRR if more attention to another female, less to a male

>
∑e∈Ek

l→j
Sj(e,k | 0)− ∑e∈Ek

q→j
Sj(e,k | 1)

∑e∈Ek
j
Sj(e,k)︸ ︷︷ ︸

MRR if more attention to a male, less to another female

where MRR denotes marginal relative relevance. Given that gender does not affect the right-hand

side of condition (7), Corollary 2 implies that social interaction facilitates the amplification of recall

probabilities if individual j interacts more intensively with individuals that share the same gender

as her and less so with with individuals of the opposite gender.

2.3 Implications for Stability

Can shocks that are idiosyncratic to an individual destabilize recall? In the following, we assess

the role of social networks for the stability of recall probability of hypothesis k, given an idiosyn-

cratic shock to the recall probability of a member of the network. We focus on a social network of

two individuals, and assume, for simplicity, that the two individuals have a common similarity

function and that each individual shares all of their personal experiences with the other peer.

Let xj be the aggregate similarity of the personal experiences of individual j from set Ek
j with

hypothesis k, for any j ∈ {1,2}:

xj = ∑
e∈Ek

j

Sj(e,k) = ∑
e∈Ek

j→i

Si(e,k) (8)

where the second equality follows from the assumption that the two individuals share a common

similarity function. Let yj be the aggregate similarity of the personal experiences of individual j

from sets EK\k
j and EO

j with hypothesis k, for any j ∈ {1,2}:

yj = γjzj + (1 − γj)zi (9)
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with

zj =

 ∑
e∈EK\k

j

Sj(e,k) + ∑
e∈EO

j

Sj(e,k)

 =

 ∑
e∈EK\k

j→i

Si(e,k) + ∑
e∈EO

j→i

Si(e,k)

 (10)

where the second equality follows from the assumption that the two individuals rely on the same

similarity function.9 Then, the recall probabilities of hypothesis k are given by

r̂1(k) =
γ1x1 + (1 − γ1)x2

γ1x1 + (1 − γ1)x2 + y1

r̂2(k) =
γ2x2 + (1 − γ2)x1

γ2x2 + (1 − γ2)x1 + y2

Individual 2 has an effect on the recall probability of individual 1 through x2, and individ-

ual 1 has an effect on the recall probability of individual 2 through x1. Hence, for given x2, y1

and y2, we have r̂2(k) = f (r̂1(k) | x2,y1,y2). Similarly, for given x1, y1, and y2 we have r̂1(k) =

g (r̂2(k) | x1,y1,y2). It is straightforward to show that, for any j ∈ {1,2} and i ̸= j,10

r̂j(k) = max
[

0,
ajr̂i(k) + bj

cjr̂i(k) + dj

]
(11)

where aj = (1 − γj)yi + (1 − γ1 − γ2)xj; bj = (γ1 + γ2 − 1)xj; cj = aj − γiyj; and dj = bj + γiyj. The

max operator captures the fact that the recall probabilities cannot be negative.

From here, it is trivial to see that, generally, there exist three equilibria: i) r̂∗1(k) = r̂∗2(k) = 0; ii)

0 < r̂∗∗1 (k), r̂∗∗2 (k)< 1; and iii) r̂∗∗∗1 (k) = r̂∗∗∗2 (k) = 1.11 However, two equilibria occur under special

circumstances: for r̂∗1(k) = r̂∗2(k) = 0 it must be that x1 = x2 = 0, and for r̂∗1(k) = r̂∗2(k) = 1 it must

be that y1 = y2 = 0. For this reason, we remain primarily focused on the more likely equilibrium

with 0 < r̂∗1(k), r̂
∗
2(k) < 1. Proposition 4 shows that this particular equilibrium is stable only if the

aggregate attention paid to personal experiences is larger than the aggregate attention we pay to

experiences shared through the network.

Proposition 4. Consider the setting above and assume that xi,yj > 0, for any i, j ∈ {1,2}, implying that

there is a unique equilibrium with 0 < r̂∗1(k), r̂
∗
2(k) < 1. Perturbating r̂1(k) or r̂2(k) away from this equi-

9We note that xj,yj ≥ 0 for any j ∈ {1,2} since by assumption, for any experience, Sj(e,k) ≥ 0.
10See Appendix A for details.
11As shown in Appendix A and visualized in Figure 2, in the case of γ1 + γ2 > 1, the equilibria are (r̂∗∗1 (k), r̂∗∗1 (k))

and (r̂∗∗∗1 (k), r̂∗∗∗1 (k)), whereas in the case of γ1 + γ2 < 1 all three are equilibria.
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librium yields two outcomes in terms of equilibrium stability:

• If γ1 + γ2 > 1, then recall probabilities converge back to the equilibrium above.

• If γ1 + γ2 < 1, then recall probabilities diverge away from the equilibrium above towards either

r̂1(k) = r̂2(k) = 0 or r̂1(k) = r̂2(k) = 1.

Proof. See Appendix D.5.

Proposition 4 shows that if the aggregate attention paid to the social network exceeds the ag-

gregate attention to own experiences, then an incremental positive shock to the recall probability

of one person will push r̂1(k) and r̂2(k) towards 1, whereas a small negative shock to an indi-

vidual recall probability will converge r̂1(k) and r̂2(k) towards 0. On the contrary, if the aggregate

attention paid to the social network does not surpass aggregate attention to own experiences, then

a shock to an individual recall probability cannot pull away recall probabilities away from their

equilibrium. Figure 2 visualizes the stability properties of this equilibrium for both cases.

Figure 2: Equilibrium stability

0 1

0

1

0 1

0

1

Note: Panel (a) exhibits the stability of recall probabilities when aggregate attention to the social network is lower than aggregate

attention to own experiences; panel (b) presents the stability of recall probabilities when aggregate attention to the social network

exceeds aggregate attention to personal experiences.

An example illustrates the intuition. Without loss of generality, suppose that there is an id-
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iosyncratic one-time shock to the recall probability of individual 1 for high inflation (k = H) because

individual 1 is experiencing higher gas prices in her location. This information is shared with the

social network via Facebook, the network pays excessive attention to this network information,

by, e.g., re-posting it on Facebook, the information feeds back to individual 1 (the originator), and

the chain repeats itself until everyone in the social network recalls high inflation events almost

with certainty, that is, r̂1(H), r̂2(H) → 1. By contrast, suppose that the network’s attention to the

information shared by individual 1 does not exceed attention to own experiences (e.g., there is

little re-posting of such information on social media), so the likelihood that the information comes

back to the originator is very low and thus (r̂1(H), r̂2(H))→ (r̂∗∗1 (H), r̂∗∗2 (H)).

Corollary 3 provides stability outcomes for the special cases when one individual in our two-

person network pays full attention to own experiences versus when one individual pays full at-

tention to the other’s experiences.

Corollary 3. Consider the case when there is a unique equilibrium, (r̂∗∗1 (k), r̂∗∗2 (k)). Then, one individual

paying full attention to own experiences is sufficient for the equilibrium to be stable, whereas one individual

paying no attention to own experiences is sufficient for the equilibrium to be unstable.

Proof. Follows directly from Proposition 4.

2.4 Testable Implications for Inflation Expectations

We now link recall probabilities with the focal object of the current paper: inflation expectations.

Consistent with our two hypotheses of interest studied above, inflation can be in either one of two

regimes: a high regime (H) with inflation equal to π̄H and a low regime (L) with inflation equal

to π̄L. We assume that the presence of the two regimes and inflation levels associated with each

regime are common knowledge. However, distinct experiences and, as a result, distinct proba-

bilities of recall lead to heterogenenous perceived probabilities assigned to each one of the two

events, that is, to high and low inflation events, which further implies heterogeneous inflation

expectations.

We formalize this link between experiences and perceived probabilities of a hypothesis as fol-

lows: Given probabilities of recall, individual j will draw with replacement Tj events from her

set of experiences, Ej ∪ E1→j ∪ ... ∪ Ej−1→j ∪ Ej+1→j... ∪ ENj+1→j. Let Rj(k) be the number of times
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that j successfully recalls events aligned with hypothesis k ∈ {H, L}, that is, Rj(k) has a binomial

distribution Rj(k)∼ Bin(Tj, r̂j(k)). From here, individual j’s perceived probability that regime k will

realize is pj(k) =
Rj(k)

Rj(H)+Rj(L) for any k ∈ {H, L}.

Therefore, individual j’s expected inflation is given by

Ejπ = pj(H)π̄H + (1 − pj(H))π̄L = pj(H)(π̄H − π̄L) + π̄L (12)

where pj(H) is the source of heterogeneous expectations, and it is through that variable that so-

cial interaction affects inflation expectations. More specifically, Proposition 5 shows that social

interaction propagates inflation expectations whenever it amplifies the recall probability of events

linked to the hypothesis of high inflation. The intuition behind this result is that an increase in

r̂j(H) increases, on average, the odds of successful recalls of experiences aligned with hypothesis

H, that is, Rj(H). An increase in the latter raises the probability that individual j assigns to the

high inflation regime, and therefore, her inflation expectations as shown in equation (12).

Proposition 5. All else equal, if social interaction amplifies (respectively, mitigates) the recall probability

for events related to the high regime for inflation, then it will lead to an increase (respectively, decrease) in

inflation expectations on average.

Proof. See Appendix D.6.

A direct, important implication of Proposition 5 is that the stability properties for the recall

probability translate into the same stability properties for inflation expectations. As a result, if

the aggregate attention paid to the social network exceeds the aggregate attention to own experi-

ences, then a small perturbation to the recall probability of one person will push r̂1(H) and r̂1(H)

towards 0 or 1, with expectations converging towards E1π = E2π ∈ {π̄L, π̄H}. On the contrary,

if the aggregate attention paid to the social network does not surpass aggregate attention to own

experiences, then a shock to an individual recall probability cannot pull away recall probabili-

ties away from their equilibrium, Ejπ = p∗∗j (H)(π̄H − π̄L) + π̄L, where p∗∗j (H) is the (average)

perceived probability of the high regime associated with r∗∗j (H).

The following summarizes three main testable implications of social interaction for the forma-

tion of inflation expectations:
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1. Social interaction has an effect on inflation expectations if people pay attention to experiences

shared by others.

2. In inflationary environments, networks of common demographics propagate expectations if

they increase similarity between shared experiences and the event of high inflation.

3. Idiosyncratic shocks can destabilize inflation expectations if aggregate attention to experi-

ences of the social network exceeds aggregate attention to personal experiences.

Our theoretical framework provides additional implications: First, social interaction increases

inflation expectations if the relative relevance of shared experiences with the high inflation hy-

pothesis exceeds the relative irrelevance of shared experiences with that same hypothesis. Second,

if the relative relevance of shared experiences with the high inflation regime exceeds their relative

irrelevance, then attributing more attention to the experiences of the social network and less at-

tention to own experiences further increases inflation expectations. By contrast, if the relative

irrelevance of shared experiences with the high inflation regime exceeds their relative relevance,

then attributing more attention to the experiences of the social network and less attention to own

experiences mitigates inflation expectations. Third, if the similarity between shared experiences

and high inflation is increasing in common demographics, then the likelihood that social interac-

tion propagates inflation expectations is higher if people are more attentive to individuals with

whom they share a larger number of demographics.

3 Data

In order to gauge the extent to which the expectations of others who live in other regions affect

expectations of individuals in a given region, we construct a novel dataset. This data set combines

dense survey data on US consumers’ inflation expectations with a map of the social network,

based off Facebook connections.

Data on consumer inflation expectations come from the Indirect Consumers Inflation Expec-

tation (ICIE) survey, developed by Morning Consult and the Center for Inflation Research of the

Federal Reserve Bank of Cleveland. These data contain weekly measures of consumer inflation

expectations, precise information of the geographic location of each consumer, and their demo-

graphic characteristics. Of note, the ICIE survey uses an approach of measuring inflation expec-
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tations the differs from the conventional approach (Hajdini et al. (2022c), Hajdini et al. (2022a)).

Instead of asking directly for aggregate inflation expectations, it takes an indirect utility approach

and elicits the change in income that would compensate respondents for the expected change in

prices. The survey is nationally representative of the US, with 20,000 observations every week.

Hajdini et al. (2022a) show that this measure has very good properties in terms of how it measures

consumers expectations and how it relates to other common measures.

The granularity of our analysis requires a large enough sample size of respondents at the

county level – our unit of analysis geographically – to obtain statistical significance. Without loss

of generality, this requirement leads us to use a monthly frequency as time unit. The main vari-

ables of interest which the survey records include the identity of counties, gender (Male-Female),

income brackets (less than 50k, between 50k and 100k and over 100k), age (18-34, 35-44, 45-64,

65+), and political party (Democrat, Republican or Independent). Hajdini et al. (2022a) discuss

how expectations of some of these groups behave in the time series.

Data on social connections at the county-level come from The Social Connectedness Index

Database. The Social Connectedness Index (SCI) was first proposed by Bailey et al. (2018a) and

measures the social connectedness between different regions of the United States as of April 2016.

It is based on friendship links on Facebook, the global online social networking service. Specifi-

cally, the Social Connectedness Index measures the relative probability that two individuals across

two counties in the US are friends with each other on Facebook. It also contains information on

the social relationship between every US county and foreign countries. Given Facebook’s scale as

well as the relative representativeness of Facebook’s user body, these data provide a comprehen-

sive measure of friendship networks at a national level.

We use the SCI for the year 2016 and hold those weights constant across the sample. Several

properties of the data are convenient for our analysis. The SCI was sampled prior to the pandemic

and the inflation surge in 2021, a period marked by low and stable inflation. Consequently, our

measure of social connectedness is unlikely to be influenced by changes in inflation expectations

after 2020. Our analysis assumes that social networks in 2016 are correlated with the networks

after 2020, which is reasonable given the stability of Facebook connections over time.

At the heart of our analysis lies a county-level measure of exposure to inflation expectations

in socially connected counties. To construct this measure, we build on the Social Connectedness
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Index between two locations i and j,

SCIi,j =
FB Connectionsi,j

FB Usersi × FB Usersj
,

where FB Connectionsi,j denotes the total number of Facebook friendship connections between in-

dividuals in counties i and j and FB Usersi, FB Usersj denote the number of users in each location.

Intuitively, if the SCI is twice as large, a given Facebook user in location i is about twice as likely

to be connected with a given Facebook user in location j.

We normalize the SCI by county and use it to weight up the expectations of others in connected

counties. That is, we define bilateral social connectedness weights of county c with county k as

follows:

ωck =
SCIck

∑
k

SCIck

These weights ωck are at the center of the analysis and we use them to construct expectations

πe,others
ct of others:

πe,others
ct = ∑

k ̸=c
ωckπe

kt

where πe
kt denote the average expectations of individuals in county k at time t. Our measure im-

plies that a county c will be more exposed to information in county k if many users of county k

have Facebook friendships with users in county c. Subsequently, we also compute more specific

subindices for specific groups, such as men or women only.

To provide a concrete example, consider the social connectedness of Cuyahoga County, where

Cleveland, OH is located, with other counties across the United States. Figure 9 illustrates this

social connectedness through a heat map depicting the weights (ωck) for c = Cleveland. In Ap-

pendix E, we present similar maps for other counties. The color scheme ranges from light yellow

to red, with red depicting counties that hold greater social significance for Cleveland. We observe

three distinct patterns. Firstly, as expected, geography plays a significant role, with Cleveland

showing stronger connections to nearby counties. Secondly, interestingly, we also observe ro-

bust social links with more distant counties. For instance, individuals residing in Hillsborough,
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Florida (Tampa) and Clark County, Nevada (Las Vegas) hold importance for Cleveland individu-

als. Thirdly, there is substantial heterogeneity in social connectedness. Even neighboring counties

show varying degrees of influence on Cleveland. This is the kind of variability that we exploit in

the paper.

Figure 3: Social Connectedness of Cleveland to Other Counties (ωc=Cleveland,k)

Exposure of Cleveland to other counties

Source: Facebook SCI Weights
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Note: The yellow-to-red color scale represents the degree to which Cleveland is socially connected to other counties, based on

ωCleveland,k . Red indicates higher ωCleveland,k . Source: Social Connectedness Index

In reverse, we also present consider the social connectedness of other counties to Cuyahoga

County, Ohio. The heat map in Figure 5 shows the weights ωck for k = Cleveland. Note that this

weights do not add up to one. Again, as in the illustration above, three patterns emerge: geogra-

phy plays an important role; counties far away are also socially connected to Cleveland; and there

is substantial heterogeneity in connectedness. Relative to before, an asymmetry in connectedness

stands out, a general feature of the data which the analysis will subsequently exploit.
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4 Empirical analysis

4.1 Overview of Empirical Challenges and Strategy

In this section, we examine whether consumers incorporate information from their social net-

works when forming expectations. To assess this, we employ county averages of social connected-

ness to gauge the impact of interconnected counties on inflation expectations at either the county

or individual level. By leveraging the Social Connectedness Index (SCI) and the ICIE data, we

create a metric that captures the level of social connectedness between counties. Subsequently,

our analysis utilizes this metric to underscore the significance of social connections in relation to

the main predictions of our model.

Understanding the role of social networks for shaping inflation expectations comes with sev-

eral challenges. First, social networks might be spuriously correlated with other networks. For

example, nearby counties are more likely to be socially connected, but at the same time, they

might also be connected by trade relationships. Second, even if social networks play a role for

inflation expectations, our quantitative estimates could be affected by endogeneity concerns such

the Manski (1993) reflection problem. It is important to highlight that the reflection problem in-

duces a bias in the estimated effects of social networks on inflation expectations only if the network

matters for expectations. By contrast, if the expectations of the social networks are, in reality, ir-

relevant for individual expectations, then the Manski (1993) reflection problem disappears. We

prove this in Appendix B. Specifically, we analytically compute the degree of bias in the OLS es-

timate of the effect of the expectations of others on individual expectations, stemming from the

reflection problem. Importantly, we show that, generally, the only case when the bias induced by

the reflection problem disappears is when the true effect of the expectations of others on individ-

ual expectations is absent. As a result, it must be that any non-zero empirical correlation between

individual expectations and the expectations of others indicates relevance of social networks for

inflation expectations.

Our analysis utilizes different approaches that overcome such challenges. As a first step, we es-

tablish that the network matters per se, both at the individual and at the county level. We interpret

this finding as a stylized fact indicating that there is a correlation in the inflation expectations of
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counties that are connected by social networks.12 As a second step, once we have established that

the network matters in the first place, we employ several empirical strategies to identify whether

information is transmitted through social networks or other networks that may spuriously corre-

late with social networks. One way to do so lies in exploiting the asymmetric nature of the social

network. Finally, we use demographic characteristics of individuals to construct county × demo-

graphic × year networks which allows for the inclusion of county-time fixed effects. These fixed

effects absorb any variability that affects all demographic groups in a county equally, dispelling

concerns about spatial spillovers, trade relationships, or demand spillovers from nearby regions,

among other confounding factors.

As a third step to address the challenges of analyzing expectations in social networks, we apply

an instrumental variables approach that addresses any remaining endogeneity concerns including

those embodied by the reflection problem. To do so we obtain exogenous cross-sectional variation

in inflation expectations from a shift-share approach that combines national changes in gas prices

and the county-level variation in the share of drivers.

Across all of these strategies, we find strong evidence supporting the hypothesis that social

networks are important in determining individuals’ inflation expectations.

4.2 The Unconditional Influence of Expectations of Others

Our analysis starts off by showing that the first prediction of the model holds in the data: Inflation

expectations are correlated with expectations in other counties linked through the social network

even after taking into account detailed fixed effects. This result holds at the county level and also

at the individual level.

4.2.1 County-Level Evidence

At the county level, we find strong, consistent evidence for the importance of the social network

for the expectations formation process. We obtain these results from estimating variants of the

following equation:

12Note that concerns of endogeneity as embodied by the reflection problem (Manski (1993)) arise only as a
quantitative concern, relevant only if the network matters in the first place. Therefore, before addressing the reflection
problem, we establish that there is evidence that individuals’ inflation expectations are affected by the expectations of
individuals in socially connected counties in the first place.

23



πe
c,t = αc + γt + β ∑

k ̸=c
ωckπe

kt + εc,t (13)

where πe
c,t denotes the average inflation expectations in county c in month t. Weights ωck capture

the linkages in the social network between county c and county k. αc denotes a county fixed effect,

γt denotes time fixed effect. The coefficient β is our main coefficient of interest. It captures the

relationship between inflation expectations, πe
c,t, and inflation expectations in the social network,

∑k ̸=c ωckπe
kt. All estimated specifications of equation 13 cluster standard errors at the county level.

Various combinations of the fixed effects, conditioning the sample to counties with more than

10 observations, and weighting by the number of responses per period make up our specifications.

Table 1 lists the different specifications and associated estimates of β across its columns. Column 1

presents a baseline without county and time fixed effects. Our preferred specification is Column 6.

This specification includes county and time-fixed effects. It shows a positive relationship between

local inflation expectations and inflation expectations in counties connected through the social

network. Specifically, a 10 percentage point increase in network-weighted inflation expectations

in other counties is statistically significantly associated with an increase of 0.38 percentage points

in a county’s inflation expectations. This result suggests that the expectations of others generally

matter when individuals form expectations.

Table 1: Network Effect at the County Level
(1) (2) (3) (4) (5) (6) (7)

Expectations of Others 0.670*** 0.306*** 0.055*** 0.318*** 0.043** 0.035** 0.041**
(0.018) (0.018) (0.020) (0.017) (0.018) (0.018) (0.018)

Average Expectations 0.997***
(0.036)

Sample N>10 All All All All All N>10
Weights Yes No No No No No Yes
County FE No No No Yes Yes Yes Yes
Time FE No No Yes No No Yes Yes
Observations 24,255 60,055 60,065 60,015 60,015 60,015 24,070
R-squared 0.151 0.009 0.026 0.150 0.167 0.167 0.441

Note: The Table shows the results of regression (13), where the dependant πe
c,t is the average inflation expectation of a county c at

time t. Column (1) uses only counties at times where they have at least 10 observations (N > 10) and weights the regression by the
number of answers in each period (Weights = Yes). Standard errors are clustered at the county level.

Estimating all other specifications (Columns 1 through 7) confirms this finding. Across spec-
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ifications, beliefs in the network turn out to matter when individuals form expectations. One

notable feature of these results is that with only a county fixed effect, a 1 percentage point increase

in inflation expectation of the network increases county inflation expectations by 0.318 percentage

points (Column 4). This coefficient is 10 times larger than in Column 6 which includes both county

and time fixed effects. The reason for this difference is that a time fixed effect (which is the only

fixed effect included in Column 3) filters out a lot of variation from the data and all counties share

similar connections with “partner” counties. Including instead a time-varying macro variable,

aggregate inflation, as a proxy for a time fixed effect produces a similar effect as Column 5 shows.

A further issue associated with the inclusion of time fixed effects is that our main control is the

dependent variable for the other observations. Therefore, the time fixed effect contains that exact

same variation, so in a way the analysis controls for the same variable twice, which results in a

significantly lower coefficient estimate. Next, we exploit individual-level variation to better take

into account various aspects of time variation.

4.2.2 Individual-Level Evidence

Exploiting the granularity of the expectations data at the individual level, the analysis can provide-

further evidence for the first prediction of the model. Exploiting individual-level data is beneficial

because it allows us to include county-time fixed effects to filter out time-varying county charac-

teristics, such as county average changes in expectations or spillovers from nearby counties.

Formally, we estimate:

πe
ict = β0 + β1πe

−i,ct + β2 ∑
k ̸=c

ωckπe
kt + ε ict, (14)

where πe
ict denotes the inflation expectations of i, located in county c at time t. πe

−i,ct denotes

the “leave-out” average inflation expectations of county c which exclude the expectations of in-

dividual i from the calculation of county average. All regressions are weighted by the number of

respondents in a county in a given period of time.

Again, we find clear support for the first, general prediction of the model – the expectations of

others are associated with individual inflation expectations. Table 2 reports the results, with the

first row displaying the coefficient associated with the network-weighted inflation expectations
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of other counties, and the second row displaying the coefficient for county “leave-out” inflation

expectations. The OLS estimates in Column 1 show that the elasticity of inflation expectations

of an individual with respect to inflation expectations in other counties is 0.22. The inclusion of

time fixed effects which absorb time variation in inflation common to all counties leaves this result

unchanged, with a coefficient of 0.175. Likewise, the inclusion of county fixed effects which cap-

ture characteristics of the county that are correlated with the network and invariant over time also

leaves this result unchanged, with a coefficient of 0.289. Including both county and time effects

again implies a statistically significant coefficient (Column 4). Now, an increase of 10 percentage

points in the inflation expectations of others leads to an increase of 0.44 percentage points in an

individual’s inflation expectations.

Table 2: Network Effect on Inflation Expectations: Individual-Level Analysis
(1) (2) (3) (4)

Expectations of Others 0.221*** 0.175*** 0.290*** 0.044**
(0.041) (0.048) (0.071) (0.017)

County Inflation Expectations 0.730*** 0.711*** 0.576*** 0.529***
(0.046) (0.042) (0.059) (0.053)

Time Fe No Yes No Yes
County FE No No Yes Yes
Observations 1,624,780 1,624,780 1,624,780 1,624,780
R-squared 0.016 0.016 0.017 0.017

Note: The Table shows the results of regression (14), where the dependant πe
ict is the inflation expectation of individual i that answers

from county c at time t. Regressions are weighted by the number of answers in a county in each period. Standard errors are clustered
at the county level.

Both this set of estimate and those from above at the county level consistently provide evidence

in line with the first prediction of the theoretical model: When forming expectations, consumers

are generally attentive to experiences shared through their social networks.

At this stage, we have established the general relevance of the social network for inflation ex-

pectations. However, social networks might correlate with other networks that might spuriously

also explain the connections. Notably, counties nearby are socially connected and, at the same

time, are connected by trade relationships due to proximity in space. In the next section, we ad-

dress this challenge by combining the network with demographic characteristics which allows to

control for county-by-time fixed effects. This exercise also naturally tests the second and third
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predictions of the model.

4.3 Demographic Similarity in the Social Network

In line with the second and third predictions of the model, this subsection shows that the impact

of social interaction on inflation expectations varies depending on the degree of demographic sim-

ilarity between the individuals in the network. This finding segues with the original intuition in

Festinger (1954) that people may be more likely to pay attention to the expectations of groups that

share similar characteristics with them.

To arrive at this result, we construct exposure to inflation expectations of similar groups in

distant counties. In particular, we define such exposure as:

∑
k ̸=c

ωckπe
d,k,t

where πe
d,k,t denotes the average inflation expectation of the demographic group d of individual i.

The demographic characteristics that we consider include gender (male, female), political affilia-

tion (democrats, republicans, independents), income (less than 50k, betweek 50k and 100k, over

100k), and age (18-34, 34-44, 45-64, 65+).

We then estimate the following specification:

πe
ict = β0 + β1πe

ct + β2 ∑
k ̸=c

ωckπe
d,k,t + γct + ε ict (15)

which represents a direct test of the model predictions 2 and 3. If the similarity between indi-

viduals matters for the transmission of inflation expectations, then we expect a positive estimate

coefficient β2.

Note that an additional advantage of combining the SCI weights with information on demo-

graphics is that we can include county-time fixed effects. The main concern which this inclusion

addresses is that counties connected by social ties are exposed to common regional shocks. For

example, San Francisco and LA are connected socially and, at the same time, there are common

shocks in California that affect inflation expectations in both places. Hence, even if they were

not connected by the social networks, we would expect their inflation expectations to co-move.

The county-time fixed effects control for any such common regional shock in California and even
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shocks in the county itself. The identifying variation comes from comparing inflation expectations

of individuals that live in the same county, connected to the same other counties, but that have

absorbed different experiences of others because they belong to different demographic groups.

Standard errors are clustered at the county-level.

Our analysis sets out by illustrating the importance of demographic similarity through the

lens of gender. This particular similarity feature has the appeal that unlike other demographics

– evaluated subsequently – it does not depend on people choices, as political affiliation. In the

case of gender, variation stems from demographic characteristics rather than reflecting possibly

endogenous choices.

Table 3: Network Effect by Gender

(1) (2) (3) (4) (5) (6)
Network − Gender 0.293*** 0.326*** 0.321*** 0.357*** 0.411*** 0.754***

(0.036) (0.032) (0.055) (0.054) (0.056) (0.099)
In f − County 0.669*** 0.658*** 0.596*** 0.584*** 0.528*** 0.211***

(0.036) (0.028) (0.041) (0.036) (0.025) (0.061)
County FE No No Yes Yes Yes Yes
Time FE No Yes No Yes Yes Yes
State-Time FE No No No No Yes No
County-Time FE No No No No No Yes
Observations 1,612,884 1,612,884 1,612,884 1,612,884 1,612,884 1,612,884
R-squared 0.025 0.025 0.026 0.026 0.026 0.028

Note: The Table shows the results of regression (15), where the dependant πe
ict is the inflation expectation of individual i that answers

from county c at time t. The network is defined as all the answers that are for individuals from the same gender in other counties.

In f − County is the average of answers from respondents with the same gender in her/his own county. Regressions are weighted by

the number of answers in a county in each period. Standard errors are clustered at the county level and time level.

Gender similarity plays an important amplifying role for social interaction in the process of

belief formation: The effect of the network turns out to be significant and relevant in terms of the

size of the coefficient as Table 3 shows. A one percentage point increase in the inflation expecta-

tions of the gender specific network increases own-inflation expectations between 0.293 and 0.754

percentage points. Notably, after additionally filtering out granular time, state-time, county and

county-time fixed effects, the coefficient is always statistically significant and bigger than in the

absence of fixed effects.

Further strong evidence for the importance of similarity within demographic groups emerges

28



when the analysis explicitly includes a measure of dissimilarity, or interference, as in Corollary 2.

To do so, we estimate regression (15), but we include the network-weighted expectations of the

other, omitted demographic group as a control. In particular, two results emerge: First, dissimilar-

ity of others – denoted by “Network-Other Gender” in the Table – has a very small and negative

effect on the formation of inflation expectations. In particular, once we include a county fixed

effect, the coefficient is insignificant; with a time fixed effect that subsumes most of the common

variation the coefficient is significant, but less than a third of the similarity effect. Second, the ef-

fect of (dis)similarity of beliefs in the respondent’s own county, captured by “County-Gender” and

“County-Other Gender”, also aligns with theory after inclusion of county and time fixed effects:

Again, own-demographics bear a positive, statistically significant sign while other-demographics

bear a smaller and possibly negative, statistically significant sign.

Table 4: Effect of Network from Own and Other Gender

(1) (2) (3) (4) (5)
Network-Gender 0.309*** 0.275*** 0.339*** 0.204*** 0.363***

(0.037) (0.020) (0.054) (0.029) (0.049)
Network-Other Gender -0.065*** -0.100** -0.011 -0.148***

(0.025) (0.040) (0.031) (0.032)
County-Gender 0.664*** 0.653*** 0.588*** 0.566*** 0.610***

(0.034) (0.031) (0.040) (0.040) (0.030)
County-Other Gender 0.028*** 0.021** -0.045*** -0.065***

(0.009) (0.010) (0.012) (0.016)
Network -0.247***

(0.041)
County -0.073***

(0.049)
County FE No No Yes Yes Yes
Time FE No Yes No Yes Yes
Observations 1,571,662 1,571,662 1,571,662 1,571,662 1,612,884
R-squared 0.025 0.025 0.025 0.026 0.024

Note: The Table shows the results of regression (15), where the dependant πe
ict is the inflation expectation of individual i that

answers from county c at time t. The network is defined as all the answers that are for individuals from the same gender in other

counties. Network − OtherGender is the network from respondents of the other gender. In f − County is the average of answers from

respondents with the same gender in her/his own county. County − OtherGender are the answers from people of the other gender in

the same county. Regressions are weighted by the number of answers in a county in each period. Standard errors are clustered at the

county level and time level.

These results provide powerful evidence for the second and third predictions of the theoret-
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ical model: Interaction with individuals with whom one shares a common demographic feature

creates an amplifying effect of social interconnectedness on inflation expectations. At the same

time, interaction with individuals with whom one does not share a common feature creates an

interfering effect on inflation expectations.

Analysis of the remaining demographic characteristics – age, income and political choice – all

affirm the finding of strong network effects for the process of belief formation. As Table 5 shows,

all of these factors individually, but also in a joint specification, clearly bear a significant relation

on beliefs through the network on top of the effect due to local beliefs. People use information

from their available network to form expectations even when the analysis takes into account com-

mon trends (time fixed effects) or local information (average of the county). The social component

of expectations formation matters.
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Table 5: Network and Individual Demographic Characteristics

(1) (2) (3) (4) (5)
Network-Age 0.304*** 0.357***

(0.033) (0.036)
County-Age 0.582*** 0.513***

(0.033) (0.031)
Network-Income 0.144*** 0.145**

(0.038) (0.057)
County-Income 0.619*** 0.521***

(0.032) (0.027)
Network-Politics 0.174*** 0.149***

(0.038) (0.035)
County-Politics 0.555*** 0.459***

(0.028) (0.023)
Network-Gender 0.363*** 0.356***

(0.049) (0.057)
County-Gender 0.610*** 0.505***

(0.030) (0.026)
Network -0.155*** -0.085** -0.083*** -0.247*** -0.711***

(0.016) (0.037) (0.024) (0.041) (0.063)
County -0.031 -0.076 -0.013 -0.073 -1.429***

(0.043) (0.052) (0.051) (0.049) (0.073)
County FE Yes Yes Yes Yes Yes
Time FE Yes Yes Yes Yes Yes
Observations 1,589,828 1,603,436 1,600,553 1,612,884 1,563,804
R-squared 0.031 0.025 0.023 0.026 0.049

Note: The Table shows the results of regression (15), where the dependant πe
ict is the inflation expectation of individual i that answers

from county c at time t. The network is defined as all the answers that are for individuals from the same demographic group in other

counties, as described in the first column. Network is the network built with all the demographic groups from other counties and

County is the average of the own county built with all the demographic groups. Regressions are weighted by the number of answers

in a county in each period. Standard errors are clustered at the county level and time level.

5 Shocks to the Network

In order to address any remaining concerns in terms of identification, in this section we ap-

ply an instrumental variable strategy. We follow Hajdini et al. (2022a) and utilize a shift-share

approach that combines cross-county variations in the proportion of individuals who use cars at

a specific time and monthly fluctuations in national gas prices. The underlying idea is that areas

with a higher intensity of car usage will experience a more pronounced impact of national gas

price shocks, creating exogenous, county-specific variation.

First, we show as a first stage that the shift-share instrument affects local inflation expectations.
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We estimate

πe
i,t = αc(i) + γt + βPgas,t × Commc(i) + ε i,t,

where πe
i,t denotes the inflation expectations of individual i at time t. Pgas,t denotes the average

national price of regular gas according to the U.S. Energy Information Administration.13 Commc(i)

denotes the share of people that use their own car to commute according to the ACS. αc(i) denotes

a county fixed effect and γt a time fixed effect. We estimate this regression specification for the

period of March 2021 through January 2023. Table 6 reports the results. Across specifications, we

observe a positive, highly statistically significant effect of the instrument on inflation expectations.

A dollar increase in the price of gas increases the individual-level inflation expectations between

1.821 and 2.217 percentage points in a county where everybody uses their car to commute, com-

pared to a counterfactual county where nobody uses a car to commute.

Table 6: Cross-sectional Effect of Gas Price on Expectations

(1) (2) (3) (4) (5)
Pgas,t 0.426 0.305

(0.272) (0.234)
Commc(i) -3.221*** -4.383***

(0.900) (1.020)
Pgas,t × Commc(i) 1.821*** 1.899*** 2.104*** 2.127*** 1.875***

(0.316) (0.276) (0.340) (0.323) (0.269)
County FE No Yes No Yes Yes
Time FE No No Yes Yes Yes
State-Time FE No No No No Yes
Observations 1,041,743 1,041,743 1,041,743 1,041,743 1,041,743
R-squared 0.007 0.013 0.011 0.017 0.019

Note: This table shows results from estimating the first-stage specification πe
i,t = αc(i) + γt + βPgas,t ×

Commc(i) + εi,t, where πe
i,t denotes the inflation expectations of individual i at time t; Pgas,t denotes the

average national price of regular gas; Commc(i) denotes the share of people that use their own car to

commute according to the ACS; and αc(i) and γt are county and time fixed effects.

Second, we exploit the exogenous within-time cross-sectional, county-specific variation em-

13We use the national gas price assuming that local county-level shocks in the cross section are less likely to influence
US demand for gas, and therefore price. This also applies to local policies that can jointly influence expectations and
local gas price. We rely on the fact that, as gas is very tradeable, its price correlates across regions following aggregate
gas price shocks.
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bodied in the above specification to show two results: On the one hand, the exogenous local

variation of gas prices in other counties causally matters for individual inflation expectations in

a given county. That is, the information transmitted through the social network causally matters

for the formation of individual inflation expectations. On the other hand, inflation expectations in

other counties – transmitted through the social network – likewise causally matter for the forma-

tion of individual inflation expectations.

To arrive at these insights, we construct the variable Gas_e f f ectc,t = β̂Pgas,t × Commc(i), that

contains county-time variation. Then, using the network linkages, we estimate regression specifi-

cations of the type:

πe
ict = αc + γt + β1πe

−i,ct + β2 ∑
k ̸=c

ωckGas_e f f ectk,t + ε ict, (16)

While time fixed effects have already been filtered out from the measure Gas_e f f ectc,t, we nonethe-

less include a time fixed effect γt in some specifications. Overall, the specifications we estimate

show whether or not information embedded in local gas prices in other counties causally affects

individual expectations in a given county.

To apply the instrument to inflation expectations, we instrument the weighted inflation expec-

tation with the weighted Gas_e f f ectc,t. That is, we estimate the following specification:

πe
i,c,t = αc(i) + β1πe

−i,ct + β2 ∑
k ̸=c

ωckπe
kt + ε i,t,

where inflation expectations of others have been instrumented by the respective Gas_e f f ectc,t

measure.

33



Table 7: Exogenous Variation and Network Effect

(1) (2) (3) (4) (5) (6)
∑k ̸=c ωckGas_e f f ectc,t 0.784*** 0.948*** 1.269*** 2.952***

(0.023) (0.028) (0.137) (0.750)
∑k ̸=c ωckπe

kt 0.326*** 0.676***
(0.007) (0.023)

πe
−i,ct 0.494*** 0.328*** 0.466*** 0.282*** 0.380*** 0.283***

(0.008) (0.007) (0.009) (0.007) (0.011) (0.008)
Time FE No No Yes Yes No No
County FE No Yes No Yes Yes Yes
Regression OLS OLS OLS OLS OLS IV
F-Test - - - - - 11497
Observations 1,624,780 1,624,780 1,624,780 1,624,780 1,624,780 1,624,780
R-squared 0.027 0.034 0.028 0.036 0.032 0.011

Note: This table shows results from estimating two specifications. First, πe
ict = αc +γt + β1πe

−i,ct + β2 ∑k ̸=c ωckGas_e f f ectk,t + εict,

and second, πe
i,c,t = αc + β1πe

−i,ct + β2 ∑k ̸=c ωckπe
kt + εi,t, where πe

ict denotes the inflation expectations of individual i in county

c at time t; πe
−i,ct inflation expectations of county c at time t excluding individual i; and πe

kt county k inflation expectations at

time t; Gas_e f f ectk,t denotes the gas effect variable constructed as described in the text; and αc and γt are county and time fixed

effects.

Two findings with a causal interpretation emerge: First, the variation captured by the gas effect

variable has a significant effect on inflation expectations when propagated through the network.

Table 7 shows this result in its first 4 columns. This effect is significant even after controlling for

county-specific variation, as columns 2 and 4 indicate. Second, when we apply the instrumental

variables approach, the coefficient estimate on the inflation expectations of others increases com-

pared to the coefficient estimate from the OLS regression. This result could indicate that when

inflation expectations are affected by certain salient prices, such as gas, the transmission to the

network might be stronger. This finding aligns with the result that consumers pay more attention

to gas prices than other goods, as shown in Coibion and Gorodnichenko (2015b).

5.1 Implications for Stability

A natural question arises in the context of our empirical results: Are social networks a stabilizing

force for the formation of inflation expectations? Our empirical findings suggest that social net-

works are not associated with unstable propagation of shared experiences. This conclusion can be
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derived from our generic regression specification:

πe
t = α + βΩπe

t + εt, (17)

where πe
t =

[
πe

1t πe
2t ... πe

Nt

]′
embeds inflation expectations in county 1 through county N;

εt =

[
ε1t ... εNt

]′
denotes a set of county-specific shocks to inflation expectations such that

εnt ∼ i.i.d.N (0,σ2
n) for any n ∈ {1,2, ..., N}; α =

[
α1 ... αN

]′
denotes a vector of constants (county

fixed effects); β denotes a scalar; and Ω is a N × N matrix with 0-diagonal and with row elements

summing 1.

We explore the propagation of a one-time county n-specific shock in period t through the so-

cial network, that is, εnt ̸= 0 for some n ∈ {1,2, ..., N} while ε−nt = 0 and εt+k = 0N×1 for any k ≥ 1.

Within period t, the following can be thought to happen: First, εnt will have a direct, immediate ef-

fect on πe
nt = αn + εnt. Second, πe

nt will affect the expectations in the other counties by propagation

through the network. Appendix C provides a thorough description of the feedback loop taking

place within period t through social networks, showing that county-level inflation expectations

converge to finite values when β ∈ (−1,1) but become explosive otherwise, that is,

πe
t =


(I − βΩ)−1α if | β |< 1

±∞ otherwise
(18)

A one-time county-specific shock to inflation expectations can de-stabilize inflation expectations

in all the other counties only if | β |≥ 1.

Empirically, which scenario are we in? Focusing on the IV empirical results in column (6) of

Table 7, our estimate of β is given by β̂ = β̂2

1−β̂1
= 0.943 < 1, implying that social networks have

not had a de-stabilizing effect on expectations.14 However, we note that even though β̂ < 1, it is

quite close to the instability threshold of 1, suggesting that variation in inflation expectations that

is due to county-level movements in consumers’ exposure to price changes in salient goods, such

as gas, can have large spillover effects on expectations through social networks. As suggested in

14Since πe
−i,c,t ≈ πe

ct, from equation (18) we have that πe
ct = αc + β1πe

ct + β2 ∑k ̸=c ωckπe
kt + εct. Therefore, the

equivalent of β in (16) is β2/(1 − β1).
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Coibion et al. (2020c), effective communication from policy makers that emphasizes inflation as a

broad rather than a goods-specific or local phenomenon can help reduce the feedback effects of

social networks.

6 Conclusion

Our analysis brings to the fore the idea that experiences shared through social networks can

have an impact on the formation of expectations. Our theoretical analysis incorporates this idea

into the framework of Bordalo et al. (2023) of memory and recall. The model shows that social net-

works can affect expectations, and provides a set of three main testable implications. First, social

networks can affect expectations. Second, demographics can be an important factor in affecting

the implications of social interactions on expectations. Third, social interaction is more likely to

increase (respectively, decrease) expectations if people interact with a social network with which

they share a larger number of (respectively, fewer) demographic factors. While our theoretical

analysis is embedded into the context of inflation expectations, it may easily generalize the other

expectational domains.

Our empirical analysis shows that these predictions, when viewed through the lens of inflation

expectations, bear relevance in the empirical environment. In particular, to do so, we take advan-

tage of a novel large dataset that merges inflation expectations of around 2 million US consumers

with their local index of social connectedness. We find that social networks matter for inflation

expectations. We also show that individuals that share similar demographic characteristics tend to

pay more attention to each other. We finally show, using exogenous variation, that the coefficient

is high, but in the range of stability suggested by the model.

These findings open up new avenues of exploring the formation of expectations in the context

of social networks. Our analysis represents only a first step as questions for future work remain

aplenty, for example in the context of stability and multiple equilibria, about the role of super-

nodes in the network, or the transmission of shocks from different regions and of different sizes.

Further work may therefore lead to additional insights with important implications for policy-

makers that aim to keep inflation expectations anchored.
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Appendix

A Implications of the Theoretical Framework for Stability

Consider the setup described in Section 2.3, and recall that the recall probabilities of hypothesis

k for individuals 1 and 2 are given by, respectively

r̂1(k) =
γ1x1 + (1 − γ1)x2

γ1x1 + (1 − γ1)x2 + y1
(A.1)

r̂2(k) =
γ2x2 + (1 − γ2)x1

γ2x2 + (1 − γ2)x1 + y2
(A.2)

Isolating x1 from (A.1), we can write x1 as x1 =
(x2(1−γ1)+y1)r̂1(k)−(1−γ1)x2

γ1(1−r̂1(k))
. Substituting for x1 into

(A.2), we get

r̂2(k) =
γ2x2 + (1 − γ2)

(x2(1−γ1)+y1)r̂1(k)−(1−γ1)x2
γ1(1−r̂1(k))

γ2x2 + (1 − γ2)
(x2(1−γ1)+y1)r̂1(k)−(1−γ1)x2

γ1(1−r̂1(k))
+ y2

=
[(1 − γ2)y1 + (1 − γ1 − γ2)x2] r̂1(k) + (γ1 + γ2 − 1)x2

[(1 − γ2)y1 − γ1y2 + (1 − γ1 − γ2)x2] r̂1(k) + γ1y2 + (γ1 + γ2 − 1)x2

(A.3)

We proceed in a similar fashion to express r̂1(k) as a function of r̂2(k). Hence, the recall probability

of individual j can be written as a function of the recall probability of individual i:

r̂j(k) =
ajr̂i(k) + bj

cjr̂i(k) + dj

where aj = (1 − γj)yi + (1 − γ1 − γ2)xj, bj = (γ1 + γ2 − 1)xj, cj = aj − γiyj, and dj = bj + γiyj.

In what follows, we analyze a number of properties of r̂j as a function of r̂i, and, in the interest

of simpler notation, we denote the recall probability of k for any individual j as r̂j. For r̂i = 1,

r̂j = 1, and for r̂i = 0, r̂j = bj/dj. Next, r̂j = 0 if r̂i =− bj
aj

; r̂j has a vertical asymptote at r̂i =− dj
cj

and

a horizontal asymptote at r̂i =
aj
cj

. Furthermore, r̂j is increasing in r̂i, that is, r̂′j =
γi(1−γj)y1y2

(cj r̂i(k)+dj)2 ≥ 0.

The second-order derivative of r̂j w.r.t. r̂i then is given by r̂
′′
j =−2γi(1− γj)y1y2

cj

(cj r̂i(k)+dj)3 . Hence,

r̂j is concave if cj

(cj r̂i(k)+dj)3 > 0 and convex otherwise. At this point, it is useful to study the sign of
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cj. In particular,

cj = (1 − γj)yi − γiyj + (1 − γ1 − γ2)xj

= (1 − γj)(γizi + (1 − γi)zj)− γi(γjzj + (1 − γj)zi) + (1 − γ1 − γ2)xj

= (1 − γ1 − γ2)(xj + zj)

(A.4)

where the second equality follows from equation (9) in Section 2.3. Therefore, cj ⪌ 0 iff γ1 +γ2 ⪋ 1.

We consider two cases: i) γ1 + γ2 < 1 and ii) γ1 + γ2 > 1.

i) γ1 + γ2 < 1. In this case, cj > 0 and thus aj > cj > 0, so the horizontal asymptote is higher

than 1. Furthermore, the intersection of rj with the x-axis occurs at 0 <−bj/aj < 1, and the vertical

asymptote −dj/cj <−bj/aj. For r̂i <−dj/cj, it has to be that r̂j > 1 since the horizontal asymptote

is higher than 1. To ensure that the function is continuous for any r̂i ∈ [0,1], we assume that the

vertical asymptote occurs for r̂i < 0, implying that dj > 0, that is, (1 − γ1 − γ2)xj > γiyj. It is then

easy to see that r̂j is concave for any r̂i ∈ [0,1]. Given that r̂j is negative for any ri ∈ [0,−bj/aj), the

function describing r̂j is given by

r̂j = max
[

0,
ajr̂i + bj

cjr̂i + dj

]

Equilibria. With a similar analysis, one can show that r̂i = max
[
0, ai r̂j+bi

ci r̂j+di

]
. Eventually, r̂∗i = r̂∗j =

1 is an equilibrium. Given the max operator, r̂∗i = r̂∗j = 0 is also an equilibrium. For other equilibria,

we have to search for the intersection between r̂j and r̂i when r̂i ∈ [−bj/aj,1) and r̂j ∈ [−bi/ai,1).

Substituting for r̂i into r̂j, we have that an equilibrium occurs whenever

f (r̂j) = φ2r̂2
j + φ1r̂j + φ0 = 0

where φ2 = cjai + djci ≥ 0, φ1 = cjbi + didj − bjci − ajai ≤ 0, and φ0 = −bjdi − ajbi ≥ 0. It follows

that f is a convex function, f (0) > 0, and f (1) = 0. Furthermore, f reaches its minimum value

for r̂j = −φ1/(2φ2) < 1, so f = 0 for some r̂∗j ∈ (0,−φ1/(2φ2)). It is straightforward to see that

f (−bj/aj) > 0, implying that r̂∗j ≥ −bj/aj. So, in the case when γ1 + γ2 < 1, there exist three

equilibria: (r̂∗i , r̂∗j ) = {(0,0), (1,1), (r̂∗∗i , r̂∗∗j )}, where r̂∗∗i , r̂∗∗j ∈ (−bj/aj,−φ1/(2φ2)).

ii) γ1 + γ2 > 1. In this case, the vertical asymptote, −dj/cj is higher than 1. Furthermore, the

intersection of r̂j with the y-axis occurs at 0 < bj/dj < 1. To ensure that the function is continuous

for any r̂i ∈ [0,1], we assume that the horizontal asymptote occurs at some r̂j < 0, implying that
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aj > 0, that is, (γ1 + γ2 − 1)xj > (1− γj)yi.15 It is then easy to see that r̂j is convex for any r̂i ∈ [0,1].

Given that r̂j is positive for any r̂i ∈ [0,1], the function describing r̂j is given by

r̂j = max
[

0,
ajr̂i + bj

cjr̂i + dj

]
=

ajr̂i + bj

cjr̂i + dj

Equilibria. One can similarly show that r̂i =
ai r̂j+bi
ci r̂j+di

. Differently from the case in i), r̂∗i = r̂∗j = 0

is not an equilibrium. Eventually, r̂∗i = r̂∗j = 1 is an equilibrium. The rest of the analysis is similar to

i), with the difference that f is a concave function with φ2 =≤ 0, φ1 = cjbi + didj − bjci − ajai ≥ 0,

and φ0 ≤ 0. To summarize, in the case when γ1 + γ2 > 1, there exist two equilibria: (r̂∗i , r̂∗j ) =

{(1,1), (r̂∗∗i , r̂∗∗j )}, where r̂∗∗i , r̂∗∗j ∈ (−bj/aj,−φ1/(2φ2)).

B The Reflection Problem

Consider the following generic regression specification:

πe
t = α + βΩπe

t + εt

where πe
t =

[
πe

1t πe
2t ... πe

Nt

]′
embeds inflation expectations in county 1 through county N,

εt =

[
ε1t ... εNt

]′
denotes a set of county-specific i.i.d. shocks to inflation expectations such

that ε it ∼N (0,σ2
i ) for any i ∈ {1,2, ..., N}, α =

[
α1 ... αN

]′
denotes a vector of constants (county

fixed effects), β denotes a scalar, and Ω is a N × N matrix with 0-diagonal and with row elements

summing to 1. We re-write the equation above as

πe
t − π̄︸ ︷︷ ︸

yt

= β [Ω(πe
t − π̄)]︸ ︷︷ ︸

Ωyt

+εt

where π̄ =

[
π̄e

1 π̄e
2 ... π̄e

N

]′
. Note that yt = (I − βΩ)−1 εt = Mεt. Let β̂ be the OLS estimate of

β. Then,

β̂ = β +
[
(y′tΩ

′Ωyt)
−1(y′tΩεt)

]
= β +

[
(ε′t M

′Ω′ΩMεt)
−1(ε′t M

′Ωεt)
]

15Note that both assumptions we impose to guarantee well-behaved functions simply put upper bounds on the
similarity between hypothesis k and experiences that do not belong to the subset of experiences related k.
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where

(ε′t M
′Ωεt) =

[
ε1t ε2t ... εNt

]


m11 m21 ... mN1

m12 0 ... mN2

... ... ... ...

m1N m2N ... mNN





0 ω12 ... ω1N

ω21 0 ... ω2N

... ... ... ...

ωN1 ωN2 ... 0





ε1t

ε2t

...

εNt



=

[
∑i m1iε it ∑i m2iε it ... ∑i mNiε it

]


∑i ̸=1 ω1iε it

∑i ̸=2 ω2iε it

...

∑i ̸=N ωNiε it


=

N

∑
j=1

(
∑
i ̸=1

ωjimjiσ
2
i

)
̸= 0

If β = 0, then yt = εt and β̂ =
[
(ε′tΩ

′Ωεt)−1(ε′tΩεt)
]
, where

(ε′tΩεt) =

[
ε1t ε2t ... εNt

]


0 ω12 ... ω1N

ω21 0 ... ω2N

... ... ... ...

ωN1 ωN2 ... 0





ε1t

ε2t

...

εNt


=

[
ε1t ε2t ... εNt

]


∑i ̸=1 ω1iε it

∑i ̸=2 ω2iε it

...

∑i ̸=N ωNiε it


= 0

with the final equality following from the fact that the error terms are uncorrelated across counties.

Therefore, if β = 0, the OLS estimate of it should also be equal to 0.

C Empirical Implications for Stability

Given a one-time shock to the expectations in county n only, inflation expectations in county

n are given by πe
nt = αn + εnt. However, due to social ties, expectations in the other counties get

affected as well, which will in turn feed back to expectations, and so on. We describe the within-

network, within-period feedback process, initiated by a one-time εnt ̸= 0, as follows:

πe
t (0) = α + εt

πe
t (1) = α + βΩπe

t (0) = (I + βΩ)α + βΩεt

... = ...

πe
t (k) =

k

∑
κ=0

(βΩ)κα + (βΩ)kεt

(C.1)
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and so on, where πe
t (k) denotes inflation expectations at the kth step of the feedback loop. We

visualize the steps of the feedback loop in the case of N = 3 and n = 1 in Figure 4.

Figure 4: Feedback Loop

Note: The subplots visualize the feedback loop in the case of three counties, when there is a one-time shock to the inflation expectations

of county 1 only. Red ellipses denote counties that have been affected by ε1t, whereas black ellipses are counties that have not been

affected by ε1t. Red arrows indicate the flow of effects through the social network.

Therefore, county-level expectations will converge to

πe
t = lim

k→∞
πe

t (k) =


(I − βΩ)−1α if ρ(βΩ) < 1

±∞ otherwise
(C.2)

where ρ(βΩ) denotes the largest eigenvalue of βΩ in absolute value. From the Gershgorin cir-

cle theorem, all the eigenvalues of Ω should lie within the unit circle, thus all eigenvalues of βΩ

lie within [−β, β].16 Furthermore, one can show that 1 is always an eigenvalue of Ω, implying

16The Gershgorin circle theorem states that every eigenvalue of a matrix lies within at least a disc centered at
a diagonal element with radius equal to the sum of the off-diagonal elements (in absolute value) in the row of the
diagonal element. In our case, every diagonal element of Ω is equal to 0, and the sum of the off-diagonal elements in
each row is equal to 1.
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that ρ(βΩ) =| β |.17 As a result, a one-time county-specific shock to inflation expectations cannot

de-stabilize inflation expectations in all the other counties if | β |< 1. By contrast, if | β |≥ 1, then

inflation expectations grow exponentially with every step of the feedback loop, converging to ±∞.

D Proofs

D.1 Proof of Proposition 1

We need to find conditions for which the difference r̂j(k) − rj(k) > 0. To simplify notation, let

∑i ωji ∑e∈Eh
i→j

Sj(e,k | θji) = âh
j for any h ∈ {k,K\k,O} and ∑i ωji ∑e∈Ei→j

Sj(e,k | θji) = âj = âk
j + âK\k

j +

âO
j . Similarly, let ∑e∈Eh

j
Sj(e,k) = ah

j for any h ∈ {k,K\k,O} and ∑e∈Ej
Sj(e,k) = aj = ak

j + aK\k
j + aO

j .

r̂j(k)− rj(k) =
γj ∑e∈Ek

j
Sj(e,k) + (1 − γj)∑i ωji ∑e∈Ek

i→j
Sj(e,k | θji)

γj ∑u∈Ej
Sj(u,k) + (1 − γj)∑i ωji ∑u∈Ei→j

Sj(u,k | θji)
−

∑e∈Ek
j
Sj(e,k)

∑u∈Ej
Sj(u,k)

=
(1 − γj)

[
âk

j (ak
j + aK\k

j + aO
j )− ak

j (âk
j + âK\k

j + âO
j )
]

aj(γjaj + (1 − γj)âj)

=
(1 − γj)

[
âk

j (aK\k
j + aO

j )− ak
j (âK\k

j + âO
j )
]

aj(γjaj + (1 − γj)âj)

(D.1)

Hence, r̂j(k)− rj(k) > 0 if the numerator is positive, that is, if

âk
j (aK\k

j + aO
j )− ak

j (âK\k
j + âO

j ) > 0 ⇐⇒
âk

j

ak
j
>

âK\k
j + âO

j

aK\k
j + aO

j

(D.2)

After replacing terms, the right-hand side inequality is identical to the one in (6).

D.2 Proof of Corollary 1

• If the social network only shares experiences that are similar with hypothesis k, then ∑i ωji ∑e∈EK\k
i→j

Sj(e,k |

θji) = ∑i ωji ∑e∈EO
i→j

Sj(e,k | θji) = 0, whereas ∑i ωji ∑e∈Ek
i→j

Sj(e,k | θji) ̸= 0. As a consequence,

the condition in (6) always applies.

• If the social network only shares experiences that are not similar with hypothesis k, then

17To do so, all one has to show is that the determinant of (Ω − I) is 0. Note that

det(Ω − I) = det



−1 ω12 ... ω1N
ω21 −1 ... ω2N
... ... ... ...

ωN1 ωN2 ... −1


 = det




0 ω12 ... ω1N
0 1 ... ω2N
... ... ... ...
0 ωN2 ... 1


 = 0

where the second equality follows from adding to the first column all the others.
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∑i ωji ∑e∈Ek
i→j

Sj(e,k | θji) = 0, whereas ∑i ωji ∑e∈EK\k
i→j

Sj(e,k | θji) and ∑i ωji ∑e∈EO
i→j

Sj(e,k | θji) ̸=

0. As a consequence, the condition in (6) is always violated.

D.3 Proof of Proposition 2

To find out the effect of γj on the recall probability, we compute the first-order derivative of r̂j(k)

with respect to γj, while preserving the same notation as in the proof of Proposition D.1.

∂r̂j(k)
∂γj

=
(ak

j − âk
j )(γjaj + (1 − γj)âj)− (aj − âj)(γjaj + (1 − γj)âj)

(γjaj + (1 − γj)âj)2

= −
âk

j (aK\k
j + aO

j )− ak
j (âK\k

j + âO
j )

(γjaj + (1 − γj)âj)2

=


(+) if relative relevance < relative irrelevance

(−) if relative relevance > relative irrelevance

(D.3)

As the attention that individual j allocates to the experiences shared by her social network in-

creases, that is, as γj declines, the recall probability of events related to hypothesis k is amplified

if it is already higher than the recall probability of events related to hypothesis k under no social

interaction.

D.4 Proof of Proposition 3

To see the effect that a change in one of the weights, we re-write the condition in (6) as a differ-

ence, that is, ∆j(k) = relative relevance − relative irrelevance. We assume that weight assigned to

experiences shared by individual l, ωl j, changes, and given that ∑i ̸=j ωji = 1, at least one other

weight has to change in the opposite direction for the constraint to hold. For simplicity and with-

out loss of generality, we assume that the weight assigned to experiences shared by individual q,

ωqj, changes.18

We then take the first-order derivative of ∆j(k) with respect to ωl j:

∂∆j(k)
∂ωji

=
∑e∈Ek

l→j
Sj(e,k | θji)− ∑e∈Ek

q→j
Sj(e,k | θji)

∑e∈Ek
j
Sj(e,k)

−
∑e∈EK\k

l→j
Sj(e,k | θji) + ∑e∈EO

l→j
Sj(e,k | θji)− ∑e∈EK\k

q→j
−∑e∈EO

q→j
Sj(e,k | θji)

∑e∈EK\k
j

Sj(e,k) + ∑e∈EO
j

Sj(e,k)

(D.4)

18The main takeaway of Proposition 3 would not change if we assumed that other weights changed as well in
response to the change in ωl j.
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Then, ∂∆j(k)
∂ωji

> 0 if

∑e∈Ek
l→j

Sj(e,k | θji)− ∑e∈Ek
q→j

Sj(e,k | θji)

∑e∈Ek
j
Sj(e,k)

>
∑e∈EK\k

l→j
Sj(e,k | θji) + ∑e∈EO

l→j
Sj(e,k | θji)− ∑e∈EK\k

q→j
−∑e∈EO

q→j
Sj(e,k | θji)

∑e∈EK\k
j

Sj(e,k) + ∑e∈EO
j

Sj(e,k)

D.5 Proof of Proposition 4

Recall that r̂2(k) = f (r̂1(k)) = max
[
0, a2 r̂1(k)+b2

c2 r̂1(k)+d2

]
and r̂1(k) = max

[
a1 r̂2(k)+b1
c1 r̂2(k)+d1

]
. From the latter, we

can isolate r̂2(k) and write it as a function of r̂1(k), that is, r̂2(k) = g(r̂1(k)) =
−d1 r̂1(k)+b1
c1 r̂1(k)−a1

. The goal is

then to figure out whether f (r̂1(k)) is higher/lower than g(r̂1(k)) for r̂1(k)> r̂1(k)∗∗, r̂2(k)> r̂2(k)∗∗

and r̂1(k) < r̂1(k)∗∗, r̂2(k) < r̂2(k)∗∗. We consider the two cases: i) γ1 + γ2 < 1 and ii) γ1 + γ2 < 1.

i) γ1 + γ2 < 1. Given the assumption in Appendix A, one can show that g(r̂1(k)) is a convex

function, intersecting the y-axis at −b1/a1 > 0. As shown in Appendix A, f (r̂1(k)) is a concave

function intersecting the x-axis at −b2/a2 > 0, and f (.) and g(.) meet each other at r̂1(k) = r̂2(k) = 1

and (r̂1(k), r̂2(k)) = (r̂1(k)∗∗, r̂2(k)∗∗), where −b2/a2 < r̂1(k)∗∗ < 1 and −b1/a1 < r̂2(k)∗∗ < 1. As a

result, it must be that f ⋛ g for any r̂1(k)⋛ r̂1(k)∗∗, r̂2 ⋛ r̂2(k)∗∗. This implies that any perturbation

to r̂1(k)∗∗, however small, will trigger larger and larger deviations of recall probabilities from the

equilibrium (see Figure 2, panel (b) for visualization).

ii) γ1 + γ2 > 1. Given the assumptions in Appendix A, one can show that g(r̂1(k)) is a con-

cave function, intersecting the x-axis at b1/d1 > 0. As shown in Appendix A, f (r̂1(k)) is convex

intersecting the y-axis at b2/d2 > 0, and f (.) and g(.) meet each other at r̂1(k) = r̂2(k) = 1 and

(r̂1(k), r̂2(k)) = (r̂∗∗1 , r̂∗∗2 ), where b1/d1 < r̂∗∗1 < 1 and b2/d2 < r̂∗∗2 (k)< 1. As a result, it must be that

g ⋛ f for any r̂1(k) ⋛ r̂1(k)∗∗, r̂2 ⋛ r̂2(k)∗∗. This implies that any perturbation to r̂1(k)∗∗ will force

recall probabilities back to the equilibrium (see Figure 2, panel (a) for visualization).

D.6 Proof of Proposition 5

The mean of the perceived probability of high inflation is given by

E
(

pj(H)
)
= E

(
Rj(H)

Rj(H) + Rj(L)

)

By the Central Limit Theorem, we have that

zH
j =

Rj(H)− Tjrj(H)√
Tj

∼ N(0,rj(H)(1 − rj(H))
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Therefore,
Rj(H)

Rj(H) + Rj(L)
=

zH
j /
√

Tj + rj(H)

zH
j /
√

Tj + rj(H) + zL
j /
√

Tj + rj(L)

and

lim
Tj→∞

Rj(H)

Rj(H) + Rj(L)
= lim

Tj→∞
pj(H) =

rj(H)

rj(H) + rj(L)

Similarly, when there is social interaction, the probability of hypothesis H converges to r̂j(H)

r̂j(H)+r̂j(L) .

Therefore, if social interaction amplifies the recall probability of the high inflation regime, that is,

if r̂j(H) > rj(H), then social connectedness will increase the perceived probability that regime H

will realize.

E Additional Figures

E.1 Social Connectedness: other examples

In the body of the text, we presented the connections of counties to Cleveland. Here, we provide

the social Connectedness to Cleveland and three other illustrative examples: Cambridge, Miami,

and Los Angeles. We observe similar patterns.
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Figure 5: Social connectedness of each county to Cleveland (ωc,Cleveland)

Social Connectedness to Cleveland

Source: Facebook SCI Weights
0 500 1000 1500 km

N

From 0 to 1
0.00002 to 0.00005
0.00005 to 0.00007
0.00007 to 0.00008
0.00008 to 0.00010
0.00010 to 0.00013
0.00013 to 0.00016
0.00016 to 0.00019
0.00019 to 0.00025
0.00025 to 0.00037
0.00037 to 0.10662

Cuyahoga County 
(Cleveland)

Note: The yellow-to-red color scale represents the degree to which counties are socially connected to Cleveland, based on ωc,Cleveland.

Red indicates higher ωc,Cleveland. Source: Social Connectedness Index
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Figure 6: Social connectedness of each county to Cambridge (ωc,Cambridge)

  Cambridge

Source: Facebook SCI Weights
0 500 1000 1500 km
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0.00008 to 0.00009
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0.00012 to 0.00016
0.00016 to 0.00023
0.00023 to 0.00041
0.00041 to 0.06224

Note: The yellow-to-red color scale represents the degree to which counties are socially connected to Cambridge, based on ωc,Cambridge.

Red indicates higher ωc,Cambridge. Source: Social Connectedness Index
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Figure 7: Social connectedness of each county to Miami (ωc,Miami)

Social Connectedness to Miami

Source: Facebook SCI Weights
0 500 1000 1500 km
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0.00048 to 0.05668

Note: The yellow-to-red color scale represents the degree to which counties are socially connected to Miami, based on ωc,Miami . Red

indicates higher ωc,Miami . Source: Social Connectedness Index
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Figure 8: Social connectedness of each county to Los Angeles (ωc,LA)

Facebook SCI Weights

Source: Facebook Social Connectedness Weights
0 500 1000 1500 km
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Note: The yellow-to-red color scale represents the degree to which counties are socially connected to Los Angeles, based on ωc,LA.

Red indicates higher ωc,LA. Source: Social Connectedness Index
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Figure 9: Social connectedness Cleveland to each of each county (ωCleveland,k)

Exposure of Cleveland to other counties

Source: Facebook SCI Weights
0 500 1000 1500 km
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Note: The yellow-to-red color scale represents the degree to which Cleveland is socially connected to other counties, based on

ωCleveland,k . Red indicates higher ωCleveland,k . Source: Social Connectedness Index

F Other Tables

(1) (2) (3) (4) (5) (6)
Network − Politics 0.284*** 0.215*** 0.277*** 0.163*** 0.168*** 0.258***

(0.019) (0.040) (0.038) (0.033) (0.035) (0.053)
In f − County 0.635*** 0.622*** 0.569*** 0.552*** 0.512*** 0.340***

(0.028) (0.033) (0.030) (0.031) (0.025) (0.042)
County FE No No Yes Yes Yes Yes
Time FE No Yes No Yes Yes Yes
State-Time FE No No No No Yes No
County-Time FE No No No No No Yes
Observations 1,600,553 1,600,553 1,600,553 1,600,553 1,600,553 1,600,553
R-squared 0.022 0.022 0.023 0.023 0.023 0.025
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(1) (2) (3) (4) (5) (6)
Network − Income 0.216*** 0.165*** 0.213*** 0.146*** 0.159*** 0.244***

(0.034) (0.031) (0.051) (0.037) (0.040) (0.071)
In f − Income 0.671*** 0.656*** 0.615*** 0.595*** 0.557*** 0.393***

(0.032) (0.034) (0.036) (0.034) (0.028) (0.054)
County FE No No Yes Yes Yes Yes
Time FE No Yes No Yes Yes Yes
State-Time FE No No No No Yes No
County-Time FE No No No No No Yes
Observations 1,603,436 1,603,436 1,603,436 1,603,436 1,603,436 1,603,436
R-squared 0.024 0.024 0.024 0.025 0.025 0.027

(1) (2) (3) (4) (5) (6)
Network − age 0.297*** 0.290*** 0.301*** 0.299*** 0.419*** 0.299***

(0.019) (0.029) (0.032) (0.031) (0.044) (0.031)
In f − age 0.632*** 0.624*** 0.583*** 0.576*** 0.442*** 0.576***

(0.035) (0.035) (0.039) (0.036) (0.044) (0.036)
County FE No No Yes Yes Yes Yes
Time FE No Yes No Yes Yes Yes
State-Time FE No No No No Yes No
County-Time FE No No No No No Yes
Observations 1,589,828 1,589,828 1,589,828 1,589,828 1,589,828 1,589,828
R-squared 0.030 0.030 0.031 0.031 0.033 0.031
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